MATH2068 MATHEMATICAL ANALYSIS II (2021-22)

CHI-WAI LEUNG

1. DIFFERENTIATION

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a real-
valued function defined on I.

Definition 1.1. Let c € I. We say that f is differentiable at c if the following limit exists:
@) - @)
T—cC Tr—c
In this case, we write f'(c) for the above limit and we call it the derivative of f at c. We say that if
f is differentiable on I if f'(x) exists for every point x in I.

Proposition 1.2. Let ¢ € I. Then f'(c) exists if and only if there is a function ¢ defined on I such
that the function ¢ is continuous at ¢ and

f(@) = fle) = p(z)(z = ¢)
forallz e I.
In this case, p(c) = f'(c).

Proof. Assume that f’(c) exists. Define a function ¢ : I — R by

J@1@) i st
p@)={ e LIFG
f'(c) if z=c

Clearly, we have f(x) — f(c) = p(z)(x —¢) for all z € I. We want to show that the function ¢ is
continuous at c. In fact, let € > 0, by the definition of the limit of a function, there is é > 0 such that

ERGE(C

whenever z € I with 0 < |x—¢| < 0. Therefore, we have |f'(c)—p(z)| <casz € I with0 < |[x—¢| < 0.
Since ¢(c) = f'(c), we have |f'(¢) — ¢p(z)| < € as © € I with |z — ¢| < 0, hence the function ¢ is
continuous at c as desired.

f(@)—f(c)

The converse is clear since ¢(z) = =—~—-~ if z # c. The proof is complete. D

| <e

Proposition 1.3. Using the notation as above, if f is differentiable at c, then f is continuous at c.

Proof. By using Proposition 1.2, if f’(c) exists, then there is a function ¢ defined on I such that the
function ¢ is continuous at ¢ and we have f(z) — f(c¢) = p(x)(x — ¢) for all x € I. This implies that
lim, . f(z) = f(c), so f is continuous at ¢ as desired. O

Remark 1.4. In general, the converse of Proposition 1.3 does not hold, for example, the function
f(z) == |z| is a continuous function on R but f'(0) does not exist.

Date: March 17, 2022.



2 CHI-WAI LEUNG

Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differen-
tiable at ¢ € I. We have the following assertions.

(i) (f +9)'(c) exists and (f + g)'(c) = f'(c) + ¢'(c )

(i1) The product (f - g)'(c) exists and (f - g)'(c) = f'(c)g(c) + f(c)d'(c).

)
(iii) If g(c) # 0, then we have (5)/(6) exists and ( ) (c) = W

Proof. Part (i) clearly follows from the definition of the limit of a function.
For showing Part (i), note that we have

flx)g(x) — fle)g(c flx)— f(e z) — g(c
(z)g(z) — fle)g(e) _ f(x) ()g(l,)Jrf(c)g() 9(c)
r—c x—c r—c
for all x € I with x # ¢. From this, together with Proposition 1.3, Part (i7) follows.
For Part (iii), by using Part (i), it suffices to show that (%)’(c) = g(g:%. In fact, ¢'(c) exists, so g is

continuous at c. Since g(c) # 0, there is §; > 0 so that g(x) # 0 for all x € I with |x — ¢| < d;. Then
we have
1 11 ) = 1 (g(c)—g(x))
z—cglx) gl z—c gx)g(c)
for all x € I with 0 < |z — ¢| < §;. By taking z — ¢, we see that (é) (c) exists and (%)'(c) = =99
The proof is complete. ]

Proposition 1.6. (Chain Rule): Let f,g be functions defined on R. Let d = f(c) for some ¢ € R.
Suppose that f'(c) and ¢g'(d) exist. Then the derivative of composition (go f)'(c) exists and (go f) (c) =
g'(d)f'(c).

Proof. By using Proposition 1.2, we want to find a function ¢ : R — R such that

go f(x) —go flc)=p(x)(z—c)
for all z € R and the function ¢(z) is continuous at ¢, and so (g o f)(c) = p(c).
Let y = f(z). By using Proposition 1.2 again, there is a function and SB(y) so that g(y) — g(d) =
B(y)(y — d) for all y € R and [B(y) is continuous at d. Similarly, there is a function a(x) we have
f(z) — f(c) = a(x)(z —c) for all x € R and «a(z) is continuous at c. These two equations imply that

gof(x)—go f(c) = B(f()(f(x) = f(¢) = B(f(x))a(x)(z — ¢)
for all x € R. Let p(z) := B(f(x)) - a(x) for z € R. Since 5(d) = ¢'(d) and a(c) = f'(c), we see that
o(c) = B(f(e)alc) = ¢'(d)f'(c). It remains to show that the function ¢ is continuous at ¢. In fact,
f'(c) exists, so f is continuous at ¢, and hence the composition o f(z) is continuous at ¢. In addition,

the function « is continuous at c¢. Therefore, the function ¢ := (8o f) - « is continuous at ¢, and so
(g o f)(c) exists with (go f) (¢) = p(c) = ¢'(d) f'(¢). The proof is complete. O

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto
J. Letd = f(c) forc € I. Assume that f'(c) exists and the inverse of f, write g := f~', is continuous
at d. If f'(c) # 0, then ¢'(d) exists and ¢'(d) = f%(c)

Proof. Let y = f(x). Note that by using Proposition 1.2, there is a function F' on I such that
f(z) — f(¢) = F(z)(x —¢) for all z € I and F is continuous at ¢ with F(c) = f'(¢) # 0. F is
continuous at ¢, so there are open intervals I and J; such that ¢ € Iy C I and d € f(I) = Ji,
moreover, F(z) # 0 for all z € I;. Note that since f(z) — f(c) = F(z)(x — ¢), we have y — d =
flg(y)) — flg(e)) = F(g(y))(9(y) — g(d)) for all y € J;. Since F(x) # 0 for all x € I;, we have
g(y) — g(d) = F(g(y))~L(y — d) for all y € J;. Note that the function F(g(y))~! is continuous at d.
Thus, ¢'(d) exists and ¢'(d) = F(g(d))~! = f%(c) as desired. O
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Definition 1.8. Let D be a non-empty subset of R and let g be a real-valued function defined on D.

(i) We say that g has an absolute mazimum (resp. absolute minimum) at a point ¢ € D if
g(c) = g(z) (resp. g(c) < g(z)) for allx € D.
In this case, c is called an absolute extreme point of g.

(ii) We say that g has a local mazimum (resp. local minimum) at a point ¢ € D if there is r > 0
such that (¢ —r,c+1r) C D and g(c) > g(x) (resp. g(c) < g(x)) for allx € (c—r,c+ 7).
In this case, c is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function g need not be a local extreme point,
for example if g(z) := x for x € [0,1], then g has an absolute maximum point at x = 1 of g but 1 is
not a local maximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local
extreme point at ¢ € I and f'(c) exists. Then f'(c) = 0.

Proof. Without lost the generality, we may assume that f has local minimum at ¢. Then there is > 0
such that f(z) > f(c) for x € (c—r,c+r) C I. Since f’(c) exists, by using Proposition 1.2, there is a
function ¢ defined on I such that f(x)— f(c) = ¢(x)(x —c) for all x € I and ¢ is continuous at ¢ with
o(c) = f'(¢). Thus, we have p(z)(x —¢) > 0 for all z € (¢ — r,c+r). From this we see that p(z) >0
as ¢ € (¢, ¢+ r), similarly, p(x) < 0 as x € (¢ — r,c). The function ¢ is continuous at ¢, so p(c) =0
and hence f'(c) = ¢(c) = 0 as desired. O

Proposition 1.11. Rolle’s Theorem: Let f : [a,b] — R be a continuous function. Assume that
f(x) exists for all x € (a,b) and f(a) = f(b). Then there is a point ¢ € (a,b) such that f'(c) = 0.

Proof. Recall a fact that every continuous function defined a compact attains absolute points, that
is, there are ¢; and ¢z such that f(c1) = mingeqy f(z) and f(c2) = max,epqy) f(x), hence, f(c1) <
f(z) < f(eg) for all z € [a,b]. If f(e1) = f(ca), then f(z) = f(e1) = f(eo) for all z € [a,b], so f/(z) =0
for all z € (a,b).

Otherwise, suppose that f(ci1) < f(c2). Since f(a) = f(b), we have ¢; € (a,b) or ¢z € (a,b). We may
assume that ¢; € (a,b). Then x = ¢; is a local minimum point of f. Therefore, f'(c1) = 0 by using
Proposition 1.10. O

Theorem 1.12. Main Value Theorem: If f : [a,b] — R is a continuous function and is differen-
tiable on (a,b), then there is a point ¢ € (a,b) such that f(b) — f(a) = f'(c)(b— a).

Proof. Define a function ¢ : [a,b] — R by

M@Zﬂ@—ﬂ@—ﬂ2:§@

for € [a,b]. Note that the function ¢ is continuous on [a,b] with ¢(a) = ¢(b) = 0, in addition, ¢'(x)
exists for all z € (a,b). The Rolle’s Theorem implies that there is a point ¢ € (a,b) such that

0=gl(e) = o) - 1O,

The proof is complete. ]

(z —a)

Corollary 1.13. Assume that f : [a,b] — R is a continuous function and is differentiable on (a,b).
If ' =0 on (a,b), then f is a constant function.
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Proof. Fix any point z € (a,b). Let z € (z,b]. By using the Mean Value Theorem, there is a point
¢ € (z,z) such that f(z) — f(2) = f'(¢)(z — 2). If f/ =0 on (a,b), so f(x) = f(z) for all z € [2,D].
Similarly, we have f(z) = f(z) for all = € [a, z]. The proof is complete. O

Definition 1.14. We call a function f is a C*-function on I if f'(z) exists and continuous on I. In
addition, we define the n-derivatives of f by f(z) := fO=V(x) for n > 2, provided it exists. In
this case, we say that f is a C™-function on I. In particular, we call f a C*-function (or smooth
function) if f is a C™-function for all n = 1,2....

For example, the exponential function exp x is a very important example of smooth function on R.

Corollary 1.15. Inverse Mapping Theorem: Let f be a C'-function on an open interval I and
let c € I. Assume that f'(c) # 0. Then there is r > 0 such that the function f is a strictly monotone
function on (¢ —r,c+1) C I. If we let J := f(c—r,c+7)), then the inverse function g := f~1:J —
(c—r,c+r) is also a Ct-function.

Proof. We may assume that f’(¢) > 0. f’(z) is continuous on I, so there is r > 0 such that f'(z) >0
forallz € (c—7r,c+7r) C I. For any z; and x5 in (¢ —r,,c+r) with 1 < x9, by using the Mean Value
Theorem, we have f(x2) — f(z1) = f'(v)(x2 — x1) for some v € (x1,x2), and hence f(z3) > f(x1).
Therefore the restriction of f on (¢ —r,c+ ) is a strictly increasing function, thus, it is an injection.
Let J:= f((¢c—r,c+r)). Then J is an interval by the Immediate Value Theorem. Moreover, J is an
open interval because f is strictly increasing. Also, if we let ¢ = f~! on J, then ¢ is continuous on
J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore,
by Proposition 1.7, we see that ¢'(y) exists on J and ¢'(y) = % fory= f(z) and x € (¢ —r,c+ 7).
Therefore, g is a C' function on .J. The proof is complete. U

Proposition 1.16. Cauchy Mean Value Theorem: Let f,g : [a,b] — R be continuous functions
with g(a) # g(b). Assume that f, g are differentiable functions on (a,b) and ¢'(x) # 0 for all x € (a,b).

- . fB)=f(a) _ f(c)
Then there is a point ¢ € (a,b) such that T0)—s(@) = 719"

Proof. Define a function ¢ on [a,b] by ¥ (x) = f(x) — f(a) — 83 g((a)) (9(x) — g(a)) for x € [a,b]. Then
by using the similar argument as in the Mean Value Theorem, the result follows. g

Theorem 1.17. Lagrange Remainder Theorem: Let f be a C™" Y function defined on (a,b). Let
xo € (a,b). Then for each x € (a,b), there is a point ¢ between xy and x such that

n (k) €T (n+1) Cc
_ Z f k(' 0) (l‘—flf(])k + fén_'_ 1()') (ZB —l’o)n+1.

Proof. We may assume that 2y < z < b. Case: We first assume that f* (mo) =0forallk=0,1,....,n
Put g(t) = (t — zo)"*! for t € [z9,z]. Then ¢'(t) = (n + 1)(t — x9)"™ and g(z¢) = 0. Then by the

Cauchy Mean Value Theorem, there is 21 € (20,z) such that L g; J; Ei; ((m 0 - & (ml)). Usmg the

) g
same step for f’ and ¢’ on [xg, z1], there is x2 € (29, 1) such that L ((;03 L@ 1; )) D(wa)

(o
"(zo

g'(x1)— ()(562)
repeat the same step, there are xy, x9, ...,z 41 in (a,b) such that zj € (a:o,mk 1) for k=1,2,...n+1
and
f@) @) D @)
g(x) — g'(x1) g (241)
In addition, note that ¢g"*!(z,.1) = (n + 1)!. Therefore, we have % = %, and hence

flz) = %(x — x0)" 1. Note z,,41 € (20, 7) and thus, the result holds for this case.



For the general case, put G(z) = f(z) — > 1, A ;{, (x — x0)* for € (a,b). Note that we have

G(zo) = G'(29) = - - - = G™(zy) = 0. Then by the Claim above, there is a point ¢ € (2o, ) such that

(n+1) (¢ . (k ) l? (n+1) (¢ .
Glx) = L. Since GHD(c) = fOHD(0), (o) = Yo L8 (o — wo)* + L2 The proof is
complete. O

Example 1.18. Recall that the exponential function e® is defined by

z . £
€ T2 nll—{goz k!

for x € R. Note that the above limit always exists for all z € R (shown in the last chapter).

Show that the natural base e is an irrational number.

Put f(z) := e® for x € R. It is a known fact f is a C™ function and f(")(z) = ¢® for all z € R. Fix
any > 0. Then by the Lagrange Theorem, for each positive integer n, there is ¢, € (0, ) such that

n k
& xn—i—l
E —‘ .
kOk n+1

In particular, taking x = 1, we have

0< " zn: L3
= e — _—
(n+1)! = k! (n+1)!

for all positive integer n. Now if e = p/q for some positive integers p and ¢, and thus, we have

n

D 1 < 3
q¢ = El " (n+1)!

for all n = 1,2... Now we can choose n large enough such that (n') € N. It leads to a contradiction
because we have

1 3(n!) _ 3

Therefore, e is irrational.

Proposition 1.19. Let f be a C? function on an open interval I and xo € I. Assume that f'(xq) = 0.
Then f has local mazimum (resp. local minimum,) at xo if f®(xg) <0 (resp. f@(zg) > 0).

Proof. We assume that f®) (xg) > 0. We want to show that z( is a local minimum point of f. The
proof of another case is similar. Note that for any = € I\ {z¢}. Then by the Lagrange Theorem, there
is a point ¢ between xy and x such that

£(&) = Fwo) + F'(o) = 0) + 3 fD @) (& — 20)* = flmo) + 5P (o) — w0)*

f® is continuous at z¢ and f®)(x) > 0, and so there is r > 0 such that f®(z) > 0 for all
x € (xg — 1,20 + 1) C I. Therefore, we have

£() = fwo) + 5P (@) @ — 20)? 2 (o)

for all x € (zg — r,zp + r) and thus, z is a local minimum point of f as desired. O
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Proposition 1.20. L’Hospital’s Rule: Let f and g be the differentiable functions on (a,b) and let
c € (a,b) Assume that f(c) = g(c) =0, in addition, ¢'(x) # 0 and g(x) # 0 for all x € (a,b) \ {c}. If
!/
the limit L := lim = exists, then so does lim —w, moreover, we have L = lim &
a—c g'(x) a—c g(x) z—c g(x)

Proof. Fix ¢ < # < b. Then by the Cauchy Mean Value Theorem, there is a point x; € (¢, x) such

that )

@) _ f@) = fe) _ f')

g(x)  g(@)—glc)  g'(z1)

/
x1 € (¢,x), so if L := lim f/(x) exists, then lim /(@) exists and is equal to L.
T—c g (x) r—rc+ g(x)
Similarly, we also have lim M = L. The proof is finished. O
z—c— g(x)

Proposition 1.21. Let f be a function on (a,b) and let ¢ € (a,b).
(i) If f'(c) exists, then the following limit exists (also called the symmetric derivatives of f at c):

Fe)— i T = Sle =)

t—0 2t

(i) If f@(c) ewists, then
FO (o) = pim LTV =2+ fle=b)

t—0 t2

Proof. For showing (i), note that we have

) i FEED I Fet ) = f)
t—0+ t t—0— t
Putting ¢t = —s into the second equality above, we see that
oy o fle—s)— fle)
f (C) N 51—1>%1+ —S .

To sum up the two equations above, we have

fle+t)—fe—t)

/ T
fle) = t1—1>I(])a+ 2t
t) — —1
Similarly, we have f/(c) = tli%l flet )2t fle ) Part (7) follows.
rey il

For showing Part (ii), let h(t) := f(c+1t) —2f(c) + f(c —t) for t € R. Then h(0) = 0 and A/(t) =
f'(c+t)— f'(c —t). By using the L’'Hospital’s Rule and Part (i), we have

_ _ / / _f! _
g LED 2@ b fle=t) o HO Pt et )
0 t2 t=0 (t2))  t=0 2t
The proof is complete. O

Definition 1.22. A function f defined on (a,b) is said to be convex if for any pair a < x1 < x3 < b,
we have

f(A =)z +txg) < (1 —1)f(z1) +1f(22)
for all t € [0,1].

Proposition 1.23. Let f be a C? function on (a,b). Then f is a convex function if and only if
f@(z) >0 for all x € (a,b).
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Proof. For showing (=): assume that f is a convex function. Fix a point ¢ € (a,b). f is convex, so
we have f(c) = f(3(c+t)+3(c—1t) < if(c+t)+3f(c—1t) forall t € R with ¢+t € (a,b) . By
Proposition 1.21, we have

FP(e) = lim flet+t) =2f(c) + flc—1)

t—0 t2

Therefore, we have f(2)(¢) > 0.

For (<), assume that f®)(z) > 0 for all z € (a,b). Fix a < 21 < x2 < band t € [0,1]. Let
¢ := (1 —t)x1 + txa. Then by the Lagrange Reminder Theorem, there are points z; € (x1,¢) and
z9 € (¢, x2) such that

Fl@2) = F(0) + (s — ) + 3 f D (z2) (w2 — )
and
Fle) = £+ F@)r = ¢)+ 3O - o),

These two equations implies that

(1= 1)F () + 1£(22) = £€) + (1 =13 F ) — ) + 15O ()2 — 0 > £(6).
since f®)(21) and f)(23) both are non-negative. Thus, f is convex. O

Corollary 1.24. Let p > 0. The function f(x) := aP is convex on (0,00) if and only if p > 1.

Proof. Note that f®)(z) = p(p — 1)zP=2 for all z > 0. Then the result follows immediately from
Proposition 1.23. O

Proposition 1.25. Netwon’s Method: Let f be a continuous real-valued function defined on [a,b]
with f(a) <0 < f(b) and f(z) =0 for some z € (a,b). Assume that f is a C* function on (a,b) and
f'(x) #0 for all x € (a,b). Then there is § > 0 with J := [z — 0, 2+ ] C [a,b] which have the following
property:

if we fix any x1 € J and let

f'(zn)

(1.1) Tptl 1= Ty —

forn=1,2,..., then we have z = lim z,,.

Proof. We first choose r > 0 such that [z — 7,z + 7] C (a,b). We fix any point z1 € (z —r, z + r) with
x1 # z. Then by the Lagrange Remainder Theorem, there is a point £ between z and ;1 such that

0=f(2) = flar) + f'(a1)(z — ;1) + %f@)(f)(z )2

This, together with Eq 1.1 above, we have

_ fl@) @ 2
B _f'(xl) —romT 2f’($1)(z o)
Therefore, we have
(2)
(1.2) Ty — 2z = &(z—xl)?
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Note that the functions f'(z) and f®)(x) are continuous on [z — r, z 4+ r] and f'(x) # 0, hence, there
is M > 0 such that ’JZC;)’gzN < M for all u,v € [z — 7,2+ r]. Then the Eq 1.2 implies that

()
2f'(x1)
Choose § > 0 such that Mé < 1 and J := [z — 0,2+ 6] C (2 —r,z + ). Note that Now we take any

r1 € J. Eq 1.3 implies that |xg — 2| < M |z — 21|? < (MJ) - |z1 — 2| < §. By using Eq 1.1 inductively,
we have a sequence (z,,) in J such that

|1 — 2| S M - |z — ap|? < (MO) - |2 — 2|
for all n = 1,2.... Therefore, we have
a1 — 2| < (M) - [zy — 2]

for all n = 1,2..., thus, lim z,, = z. The proof is complete. ]

(1.3) |z — 2| = | (z—x1)?| < M(z — 1)



2. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a,b] and m < f < M on
[a,b] .

(ii): Let P : a = 29 < 21 < .... < x, = b denote a partition on [a,b]; Put Ax; = x; — z;—1 and
I|IP|| = max Az;.

(iii): M;(f, P) :=sup{f(x):x € [xi—1,zi}; mi(f, P) == inf{f(x) : x € [xi_1, 2}
Set wl(f, P) = Mz(f, P) - ml(f, P)

(iv): (the upper sum of f): U(f, P) = > M;(f, P)Ax;
(the lower sum of f). L(f,P):=>_ m;(f, P)Ax;.

Remark 2.1. [t is clear that for any partition on [a,b], we always have
(i) m(b— a) < L(f, P) < U(f, P) < M(b—a).
(it) L(=f,P) = =U(f, P) and U(—f,P) = —L(f, P).

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

(i) If P C Q, then L(f, P) < L(f,Q) < U(f,Q) < U(f,P).
(i) We always have L(f, P) < U(f,Q).

Proof. For Part (i), we first claim that L(f,P) < L(f,Q) if P C . By using the induction on
[ .= #Q — #P, it suffices to show that L(f, P) < L(f,Q)asl=1. Let P:a=ao<z1 < - <xp=0>
and @ = PU{c}. Then ¢ € (zs_1,x5) for some s. Notice that we have

ms(f, P) < min{m,(f,Q), ms1(f,Q)}.
So, we have
ms(f7 P)(xs - xs—l) S ms(fa Q)(C - xs—l) + ms-l—l(fv Q)(xs - C)'
This gives the following inequality as desired.
(21) L(f7 Q) - L(f7 P) = ms(fa Q)(C - xs—l) + ms-l—l(fu Q)(-Ts - C) - ms(fa P)(l‘s - xs—l) > 0.

Now by considering — f in the Inequality 2.1 above, we see that U(f,Q) < U(f, P).
For Part (ii), let P and @ be any pair of partitions on [a,b]. Notice that P U @ is also a partition on
[a,b] with P C PUQ and Q € PUQ. So, Part (i) implies that

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q).
The proof is complete. O

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on |a,b]. The upper integral (resp. lower integral) of f
over [a, b], write f;f (resp. f:f), is defined by

b
/ f=mf{U(f, P): P is a partation on [a,b]}.
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(resp.
b
/ f=sup{L(f,P) : P is a partation on [a,bl]}.)

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I, <) a directed set if for each pair of elements i1
and i9 in I, there is i3 € I such that i1 <3 and 79 < i3.

A net in R is a real-valued function f defined on a directed set I, write f = (x;);cs, where z; := f(7)
forie 1.

We say that a net (z;) converges to a point L € R (call a limit of (x;)) if for any € > 0, there is iy €
such that |z; — L| < ¢ for all i > 4.

Using the similar argument as in the sequence case, a limit of (x;) is unique if it exists and we write
lim; x; for its limits.

Example 2.5. Appendix: Using the notation given as before, let
I:={P: P is a partitation on [a,b] }.
We say that P, < P, for P, P, € I if P C P,. Clearly, I is a directed set with this order. If we put
up = U((f, P), then we have
b
li = :
imup /a f

In fact, let € > 0. Then by the definition of an upper integral, there is Py € I such that

/abeU(f,Po) S/abera

Lemma 2.2 tells us that whenever P € I with P > Fy, we have U(f,P) < U(f, ). Thus we have
lup — fff\ < ¢ whenever P > Py as desired.

Proposition 2.6. Let f and g both are bounded functions on [a,b]. With the notation as above, we

always have
() o
/ab r< 't

(ii) [2(~f)=—[it.
(1)

/abf+/abgg/ab<f+g>g/ab(fms/:ﬁ/abg.

Proof. Part (i) follows from Lemma 2.2 at once.

Part (i¢) is clearly obtained by L(—f, P) = —=U(f, P).

For proving the inequality fff + f;g < f;(f + g) < first. It is clear that we have L(f, P)+ L(g, P) <
L(f + g, P) for all partitions P on [a,b]. Now let P; and P, be any partition on [a,b]. Then by Lemma
2.2, we have

b
L(f,P1)+ L(g, ) < L(f,PLUP) + L(g,PLUP) < L(f +g,PLUP) < / (f +9).
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So, we have

(2.2) / / /f+g

As before, we consider —f and —g in the Inequality 2.2, we get [ ; (f+g9) < fo f —i—fjbg as desired. O

The following example shows the strict inequality in Proposition 2.6 (i7i) may hold in general.

Example 2.7. Define a function f,g:[0,1] - R by

1 if x€[0,1]NQ;
J(@) = {—1 otherwise.
and
() = -1 if ©e€l0,1]NQ;
9= 1 otherwise.

Then it is easy to see that f + g =0 and

So, we have

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a, b]
if fbaf = f;f In this case, we write f;f for this common value and it is called the Riemann integral
of f over [a,b).

Also, write R[a,b] for the class of Riemann integrable functions on [a,b].

Proposition 2.9. With the notation as above, R[a,b] is a vector space over R and the integral

/ feRabH/feR

defines a linear functional, that is, af + Bg € Rla,b] and fa (af + Bg) = Ozf;f + Bffg for all
1,9 € Rla,b] and o, B € R.

Proof. Let f,g € R[a,b] and o, f € R. Notice that if @ > 0, it is clear that Tabaf = aﬁ’f = afabf -
O‘f;f = fabaf- Also, if v < 0, we have fabaf = Oéfabf = Oéf:f = Oéf:f = f;af. Therefore, we have

f:af = af;f for all & € R. For showing f + ¢g € R[a,b] and f;(f—i—g) = fff+f;g, these will
follows from Proposition 2.6 (iii) at once. The proof is finished. O
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The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P:a=xzg <z <--- <z, =band 1 <7 <n, put
wi(f, P) = sup{|f(z) — f(2')] : #,2" € [wi—1, wi] }.
It is easy to see that U(f, P) — L(f, P) = >, wi(f, P)Ax;.

Theorem 2.10. Let f be a bounded function on [a,b]. Then f € R|a,b] if and only if for all € > 0,
there is a partition P:a =x9 < --- <z, = b on [a,b] such that

(2.3) 0 <U(f,P) = L(f.P) =) wi(f, P)Az; <e.

i=1
Proof. Suppose that f € Ra,b]. Let € > 0. Then by the definition of the upper integral and lower
integral of f, we can find the partitions P and @ such that U(f, P) < f;f +¢ and f;f —e < L(f,Q).
By considering the partition P U (), we see that o

/f—e<L(f,Q><L<f PUQ)<U(f,PUQ) < U(f,P /f+6

Since fff = faf = faf, we have 0 < U(f,PUQ) — L(f,PUQ) < 2¢. So, the partition P U @ is as
desired. o

Conversely, let € > 0, assume that the Inequality 2.3 above holds for some partition P. Notice that
we have

L(J.P) < /b fs/abfswf,m.

So, we have 0 < E’f - f;f < ¢ for all € > 0. The proof is finished. ]

Remark 2.11. Theorem 2.10 tells us that a bounded function f is Riemann integrable over [a,b] if
and only if the “size” of the discontinuous set of f is arbitrary small. See the Appendiz 3 below for
details.

Example 2.12. Let f:[0,1] — R be the function defined by

- |

Then f € R[0,1].

(Notice that the set of all discontinuous points of f, say D, is just the set of all (0,1] N Q. Since the
set (0,1] N Q is countable, we can write (0,1] N Q = {21, 22, ....}. So, if we let m(D) be the “size” of
the set D, then m(D) = m(U;2{zi}) = Yooy m({zi}) = 0, in here, you may think that the size of
each set {z;} is 0. )

Proof. Let € > 0. By Theorem 2.10, it aims to find a partition P on [0, 1] such that
U(f,P) —L(f,P) <eg

Notice that for z € [0, 1] such that f(x) > € if and only if x = ¢/p for a pair of relatively prime positive
integers p, ¢ with % > e. Since 1 < g < p, there are only finitely many pairs of relatively prime positive

integers p and ¢ such that f(%) >e. So, if welet S :={x €0,1]: f(x) > e}, then S is a finite subset

if r = f, where p, q are relatively prime positive integers;

O QI

otherwise.
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of [0,1]. Let L be the number of the elements in S. Then, for any partition P:a =129 < -+ < x,, = 1,
we have

Yowilf,P) Az =( Y.+ > ) wlf,P)Ax;
=1 ’L':[{L‘ifl,fl‘i]ﬂSZQ) i:[x,',l,xi]ﬁs#@
Notice that if [z;-1,2;] NS = ), then we have w;(f, P) < e and thus,
Z wi(f,P)Azx; <e Z Az; <e(1-0).
i:[xifl,xi]ﬁSZ(D i:[xi,l,xi}ﬂS:Q)

On the other hand, since there are at most 2L sub-intervals [z;_1, x;] such that [z;_1,z;] NS # () and
wi(f,P) <1foralli=1,..,n,so, we have

S wlf,P) Az <1 Y A <2L|P).
z‘:[mi_l,zi]ﬂS;ﬁ@ i:[mi_l,xi}ﬂSyﬁ@

We can now conclude that for any partition P, we have
n
> wi(f, P)Az; < e+ 2L||P|.
i=1

So, if we take a partition P with ||P|| < e/(2L), then we have Y " ; w;(f, P)Ax; < 2e.
The proof is finished. O

Proposition 2.13. Let f be a function defined on [a,b]. If f is either monotone or continuous on

[a,b], then f € R[a,b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = xg < --- < z,, = b, we have w;(f, P) = f(x;) — f(zi—1). So, if
|P|| < e, we have

n

D owilf, P) Az =Y (fzi)=flia))Aay < ||P| Y (fzi) = f(zia)) = |PI(f(b)=F(a)) < e(f(b)~f(a)).
i=1 i=1 i=1
Therefore, f € Rla,b] if f is monotone.

Suppose that f is continuous on [a,b]. Then f is uniform continuous on [a,b]. Then for any £ > 0,
there is 6 > 0 such that |f(z) — f(2)| < € as x, 2’ € [a,b] with |z — 2’| < J. So, if we choose a partition

P with ||P|| < 6, then w;(f, P) < ¢ for all 5. This implies that

Zwi(f, P)Ax; < EZA(IZZ' =¢e(b—a).
i=1 i=1

The proof is complete. U

Proposition 2.14. We have the following assertions.

(i) If f,g € Rla,b] with f < g, then f;f < f;g.
(ii) If f € Rla,b], then the absolute valued function |f| € Rla,b]. In this case, we have |fff| <

b
Ja 11
Proof. For Part (i), it is clear that we have the inequality U(f, P) < U(g, P) for any partition P. So,

b b b b
we have [ f= ["f< ['9=["g.
For Part (i7), the integrability of | f| follows immediately from Theorem 2.10 and the simple inequality
171G") — [l < [f@') — F(@")] for all #/,a" € [a,b]. Thus, we have U(f], P) — L(f],P) <
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U(f,P)— L(f,P) for any partition P on [a, b].
Finally, since we have —f < |f| < f, by Part (i), we have ]fff| < f; |f| at once. O

Proposition 2.15. Let a < ¢ <b. We have f € R[a,b] if and only if the restrictions f|(, € Rla, c|
and fli.p) € Rlc,b]. In this case we have

(2.4) /abfz/:er/cbf-

PTOOf. Let f1 = f’[ad and fg = f’[c,b]-
It is clear that we always have

U(f1,P1) — L(f1, P1) + U(f2, P2) — L(f2, P2) = U(P, f) — L(f, P)

for any partition P; on [a,c] and P on [c,b] with P = P, U P.

From this, we can show the sufficient condition at once.

For showing the necessary condition, since f € R[a,b], for any € > 0, there is a partition @ on [a, ]
such that U(f, Q) — L(f,Q) < € by Theorem 2.10. Notice that there are partitions P; and P, on [a, ]
and [c, b] respectively such that P := QU {c} = P U P,. Thus, we have

U(f1, 1) — L(f1, P1) + U(f2, P2) — L(f2, 2) = U(f, P) — L(f, P) < U(f,Q) — L(f,Q) <e.

So, we have f; € Rla,c| and fs2 € R]c,b].
It remains to show the Equation 2.4 above. Notice that for any partition P; on [a,c| and P, on [c, b],
we have

b b
L(f1,P1)+L(f2,P2)=L(f,P1UP2)é/ f=/ ;.

So, we have [T f + fcb f < f; f. Then the inverse inequality can be obtained at once by considering
the function —f. Then the resulted is obtained by using Theorem 2.10. g

Proposition 2.16. Let f and g be Riemann integrable functions defined ion [a,b]. Then the pointwise
product function f - g € Rla,b].

Proof. We first show that the square function f? is Riemann integrable. In fact, if we let M =
sup{|f(x)| : = € [a,b]}, then we have wy(f%, P) < 2Mwy(f, P) for any partition P :a = 29 < -+- <
an = b because we always have |f2(z) — f2(a')| < 2M|f(x) — f(2')| for all z,2" € [a,b]. Then by
Theorem 2.10, the square function f? € R[a, b].

This, together with the identity f-g = %((f +9)? — 2 — ¢?). The result follows.

O

Remark 2.17. In the proof of Proposition 2.16, we have shown that if f € Rla,b], then so is its
square function f?. However, the converse does not hold. For exzample, if we consider f(z) = 1 for
r€QnI0,1] and f(x) = —1 for x € Q°N[0,1], then f ¢ R[0,1] but f>=1 on [0,1].

Proposition 2.18. Assume that f : [a,b] — [c,d] is integrable and g : [¢,d] — R is continuous.
Then the composition g o f € Rla,b].

Proof. Let € > 0. Note that ¢ is uniformly continuous on [¢, d] because g is continuous on [, d]. Then
there is 0 > 0 such that |g(y) — g(v')| < € whenever y,y’ € [¢,d] with |y — 3’| < 4. On the other hand,
since f € RJa,b], there is a partition P on [a,b] such that Y wi(f, P)Ax, < £d. Hence, we have

§ Y Az < Y wilf, P)Awg < &b

ki (f,P) =6 kiwe (f,P)=6
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This implies that

Z Az < €.

kwk(fvp)zé

On the other hand, by the choice of §, we see that wi(go f, P) < € whenever wg(f, P) < §. Therefore,
we can conclude that

Zwk(g o f,P)Axy = Z wi(go f, P)Axy + Z wr(go f,P)Axy, < e(b—a) +2Me
% k:wy (f,P)<6 kewy, (f,P)>5

where M := sup|f(z)|. The proof is complete. O

Remark 2.19. The composition of integrable functions need not be integrable. For example, if we
put f is given as in Example 2.12 and g(x) = x for x = 1/n,n = 1,2, ...; otherwise g(x) = 0. Then
f.g € R[0,1] but go f & R[0,1].

Proposition 2.20. (Mean Value Theorem for Integrals)
Let f and g be the functions defined on [a,b]. Assume that f is continuous and g is a non-negative
Riemann integrable function. Then, there is a point & € (a,b) such that

b b
(2.5) [ @tz = s / g(a)da.

In particular, there is a point & in (a,b) such that f(& f flx

Proof. By the continuity of f on [a, ], there exist two points 1 and x2 in [a, b] such that
f(z1) = m :=min f(x); and f(x2) = M := max f(x).

We may assume that a < x1 < x9 < b. From this, since g < 0, we have

myg(z) < f(x)g(x) < Mg(x)

for all z € [a,b]. From this and Proposition 2.16 above, we have

b b b
m/gé/fgSM/g
a a a

So, if fab g = 0, then the result follows at once.
We may now suppose that ff g > 0. The above inequality shows that

1219
fa ™

Therefore, there is a point £ € [x1, 22| C [a, b] so that the Equation 2.5 holds by using the Intermediate
Value Theorem for the function f. Thus, it remains to show that such element £ can be chosen in
(a,b).

Let a < x1 < x9 <b be as above.

If 1 and z9 can be found so that a < 1 < z9 < b, then the result is proved immediately since
€ € [x1,22] C (a,b) in this case.

Now suppose that z; or xs does not exist in (a,b), i.e., m = f(a) < f(z) for all z € (a,b] or
f(x) < f(b) = M for all z € [a,b).

Claim 1: If f(a) < f(z) for all x € (a,b], then f fg> fla f g and hence, & € (a,z2] C (a,b].

For showing Claim1, put h(x) := f(x) — f( ) for « € [a,b]. Then h is continuous on [a,b] and h > 0

on (a,b]. This implies that fcd h > 0 for any subinterval [c,d] C [a,b]. (Why?)

m = f(z1) < < f(z2) = M.
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On the other hand, since fbg = fbg > 0, there is a partition P : a = 29 < -+ < x, = b so that
L(g, P) > 0. This implies that myg (g, P) > 0 for some sub-interval [zj_1, zx|. Therefore, we have

/hg>/ hg > my(g, )/ h > 0.
—1

Hence, we have f fg> f(a f g. Claim 1 follows.

Similarly, one can show that if f(z) < f(b) = M for all = € [a,b), then we have f fg< f(b f g.
This, together with Claim 1 give us that such £ can be found in (a,b). The proof is finished. O

Example 2.21. We have lim/ sin"zdx = 0. To see this, for any 0 < € < 7/2 and for each
n
n =1,2..., the Mean value theorem gives a point &, € (0,5 — ¢) such that

71"
0</ sin” zdx = ( / / sin” zdzx
0 —
5—€

w/2
<sin" g, / sin xdx + / sin” xdx
0

T _
25

< sin”_l(g —e)+e.

Taking n — oo, we have lim,, foﬂ/Q sin™ xdx = 0. The proof is finished.

Now if f € Rla,b], then by Proposition 2.15, we can define a function F : [a,b] — R by

0 ifc=a
(26) Flo) = {f;f ifa <c<b.

Theorem 2.22. Fundamental Theorem of Calculus: With the notation as above, assume that
f € Rla,b], we have the following assertion.
(i) If there is a continuous function F on [a,b] which is differentiable on (a,b) with F' = f,
then f;f = F(b) — F(a). In this case, F is called an indefinite integral of f. (note: if
Fy and F> both are the indefinite integrals of f, then by the Mean Value Theorem, we have
Fy = F1 + constant).
(ii) The function F defined as in Eq. 2.6 above is continuous on [a,b]. Furthermore, if f is
continuous on [a,b], then F' exists on (a,b) and F' = f on (a,b).

Proof. For Part (i), notice that for any partition P :a = x9 < --+- < 2, = b, then by the Mean Value
Theorem, for each [z;_1, x;], there is & € (z;_1, x;) such that F(z;)— F(x;—1) = F'(&)Az; = f(&)Ax;.

So, we have
P) <> f(&)Ax; =) F(x;) — F(zi1) = F(b) — F(a) <U(f, P)

for all partitions P on [a, b]. This gives

/abfz/:fSF(b)F(a) S/:fz/abf
as desired. o

For showing the continuity of F' in Part (ii), let a < ¢ < x < b. If |f| < M on [a,b], then we have
|F(x)—F(c)| = | [ f| < M(z—¢). So,limg_s.q F(z) = F(c). Similarly, we also have lim,_,._ F(z) =
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F(c). Thus F' is continuous on [a, b].
Now assume that f is continuous on [a, b]. Notice that for any ¢t > 0 with a < ¢ < ¢+t < b, we have

1 1 c+t
it f@) < G(Fer)-F@) =7 [ f< sw f@).
z€[e,c+t] t tJe zT€[c,c+t]

1 1
Since f is continuous at ¢, we see that thr0n+ ;(F(c—i—t) —F(c)) = f(c). Similarly, we have tlim —(F(c+
—

—0— ¢

t) — F(c)) = f(c). So, we have F'(c) = f(c) as desired. The proof is finished. O

Definition 2.23. For each function f on [a,b] and a partition P : a = x9 < --- < x, = b, we call

R(f,P,{&}) = Zf\il f(&) Az, where & € [xi—1, ], the Riemann sum of f over [a,b].

We say that the Riemann sum R(f,P,{&}) converges to a number A as ||P| — 0, write A =
lim R(f, P,{&}), if for any e > 0, there is § > 0 such that

(| Pl|—0
|A—R(f,P, {5@})| <e
whenever ||P|| < § and for any & € [xi—1, zi].

Proposition 2.24. Let f be a function defined on [a,b]. If the limit lim R(f, P,{&}) = A euwists,

li
[l Pl|—0
then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = zg <
- < @y, = bsuch that | Y ) f(&)Axk| < 1+ |A| for any &, € [z_1,2g]. Since f is unbounded, we
may assume that f is unbounded on [a, z1]. In particular, we choose & = xy, for k = 2,...,n. Also, we
can choose ) € [a, z1] such that

[F(E)| Az < 1+ |A[+| Y flax) Ayl
k=2
It leads to a contradiction because we have 1+ [A| > |f(&)|Ax1 — | > p_s f(zk)Azg|. The proof is
finished. O

Lemma 2.25. f € R|a,b] if and only if for any € > 0, there is 6 > 0 such that U(f,P) — L(f,P) < e
whenever || P|| < 9.

Proof. The converse follows from Theorem 2.10.
Assume that f is integrable over [a, b]. Let € > 0. Then there is a partition Q : a = yo < ... < y; = bon
[a,b] such that U(f,Q) — L(f,Q) < . Now take 0 < 6 < £/l. Suppose that P:a =129 < ... <2, =b
with ||P|| < . Then we have
U(f,P)—L(f,P)=1+11I
where
1:QN[x;_1,2;]=0
and
IT = > wilf,P)Ax
:QN[wi—1,x;])#0
Notice that we have
IS U(faQ) _L(faQ) <e
and
I<M-my Y Amig(M—m)Ql-%:Q(M—m)e.
QN[ —1,x;]#0
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The proof is finished. O

Theorem 2.26. f € R[a,b] if and only if the Riemann sum R(f, P,{&}) is convergent. In this case,
b
R(f,P,{&}) converges to / f(z)dz as ||P|| — 0.

Proof. For the proof (=) : we first note that we always have
and
b
L(.P) < [ f@)ds <UP)
for any partition P and &; € [z;_1, z;].
Now let £ > 0. Lemma 2.25 gives 6 > 0 such that U(f, P) — L(f, P) < ¢ as ||P|| < §. Then we have
b
| [ fade — RO PG <

b
as ||P|| < ¢ and & € [x;—1, ;). The necessary part is proved and R(f, P,{&;}) converges to / f(z)dz.
For (<) : assume that there is a number A such that for any € > 0, there is § > 0, we havea
A—E<R(f7P,{§Z}) <A+e

for any partition P with ||P|| < § and &; € [z;—1, 4]

Note that f is automatically bounded in this case by Proposition 2.24.

Now fix a partition P with ||P|| < . Then for each [z;_1,2;], choose & € [zi_1, ;] such that
M;(f, P) —e < f(&). This implies that we have

U(f,P) _E(b_a) < R(pru{gl}) <A+te.
Thus, we have shown that for any € > 0, there is a partition P such that
b
(2.7) /f(x)d:ngU(f,P)§A+s(1+b—a).

By considering —f, note that the Riemann sum of —f will converge to —A. The inequality 2.7 will
imply that for any € > 0, there is a partition P such that

A—5(1+b—a)§/bf(:r)d:1:g/bf(w)dx§A+z—:(1+b—a).

The proof is complete. ]

Theorem 2.27. Let f € Rlc,d] and let ¢ : [a,b] — [c,d] be a strictly increasing function with
é(a) = c and ¢(b) = d. Assume that ¢ is a C' function and ¢’ can be extended to a strictly positive
continuous function on [a,b]. Then f o ¢ € Rla,b], moreover, we have

d b
/ f(@)de = / F(o()d(t)dt.

Proof. Let A = fcd f(x)dz. By using Theorem 2.26, we need to show that for all € > 0, there is 6 > 0
such that

A= F(6(&R)d (&) Dti| < &
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for all & € [tk—1,tx] whenever Q : a =ty < ... < t,, = b with ||Q|| < J.
Now let € > 0. Then by Lemma 2.25 and Theorem 2.26, there is d; > 0 such that

(2.8) A= flm)Day| <&
and
(2.9) > wk(f, P)Aay <e

for all ny € [xx_1,zx] whenever P:c=xy < ... < , = d with || P]| < 01.

Now put z = ¢(t) for t € [a,b].

Note that there is § > 0 such that |¢(t) — ¢(t')] < 61 and |¢'(t) — ¢'(¥')| < e for all ¢,¢' in[a,b] with
[t —t'| <.

Now let Q :a =ty < ... < ty, = b with ||Q| < . If we put x = ¢(tg), then P:c=2¢ < .... <z, = d
is a partition on [c, d] with ||P|| < d; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [t;_1,t], there is § € (t5x—1,t%) such that

Az = ¢(tr) — d(te—1) = ¢' (&) Aty
This yields that
(2.10) |Azxy, — ¢/(§k)Atk| < ety

for any & € [ty—1,tx] for all k = 1,...,m because of the choice of 4.
Now for any & € [tx—1,tx], we have

JA =" F(@(&))d (&) Dte] < [A =" F((£1))0 () At
(2.11) +1 D FOEDD () Dt = Y F($(6))¢ (€r) At
HID D F OGN () At — > F(D(6R) (&) Aty
Notice that inequality 2.8 implies that
A= FB(EN (E) Dt = [A =D F(9(&) Dy < e.
Moreover, since we have |¢'(&}) — ¢/(§k)| < e for all k =1,..,m, we have
[ D FS(ENG (€A = Y F(6(ED) (€r) At < M(b—a)e

where |f(x)| < M for all z € [c,d].
On the other hand, by using inequality 2.10 we have

¢ (&) Dty < Axy + ety
for all k. This, together with inequality 2.9 imply that

| D FOEDN () Dtk — Y F(S(6))S (€0 At
<Y wk(f, PG (&) Ati] (2 G(&8), (k) € (w1, 24])
< Zwk [, P)(Axy + eAty)
<e+2M(b—a)e.
Finally by inequality 2.11, we have
|A= " F(B(&))S (&) Ot < e+ M(b—a)e + e+ 2M (b — a)e.

Finally, we have to show that fo¢ € R[a, b]. To see this, we have shown that the function fop(t)¢'(t) €
RJ0, 1] by above. Since ¢’ > 0 is continuous on [a, b], % is continuous on [a,b] and thus é € Rla,b].

This implies that the function f o ¢ = %( fog¢-¢') € R[0,1] as desired. The proof is complete. O
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Lemma 2.28. Let g be a convex function defined on [a,b]. Then for a < ¢ < x < d < b, we have

9(x) —g(c) _ g(d) — g(x)
r—c ~ d—=xz

Proof. Let £(x) be the straight line between the points (¢, g(c¢)) and (d, g(d)). Then we have g(x) < ¢(x)
for all = € [¢,d] by the convexity. This implies the following that we desired.
o) —gle) _ a) — (e) _ Hd) — tz) _ gld) —glx)

Tr—c - T —c d—x - d—x

0

Proposition 2.29. (Jensen’s inequality): Let g : [d/,b'] — R be a convex function and f €
R([0,1]) such that f(]0,1]) C [a,b] C (a’,V') and go f € R([0,1]). Then we have

1 1
o[ st < [ (go oy
Proof. Notice that if we let ¢ := fol f, then ¢ € [a,b] and hence, g(c) is defined. Let s := sup{M :

CcC—X

a’ <z < c}. Then by Lemma 2.28, we have g(c) + s(f(t) —c¢) < (go f)(t) for all ¢t € [0,1]. This gives

1 1
9() = g(c) + s /0 (f(t) - e)dt < /0 (g0 f)()dt.

The proof is complete. ]

Example 2.30. Let ay,...,a, be any real numbers. Let p > 1. Then we have

lar| + - - - |an] » 1 &
Ll L R Y b
ey <o Y o

To see this, , the results obtained by applying the Jensen’s inequality for the convex function g(z) = xP

forz >0 and f(t) := |ag| fort € [(k—1)/n,k/n) fork=1,...,n.

Definition 2.31. Let —co < a < b < 0.

(i) Let f be a function defined on [a,00). Assume that the restriction fliq ] is integrable over
00 T
[a,T] for all T > a. Put / f:= lim / [ if this limit exists.
a T—oo Jq

Similarly, we can define ffoo fif f is defined on (—o0,b).
b b
(i) If f is defined on (a,b] and fli.y € Rlc,b] for all a < c <b. Put / f= £m+ foaf it

exists.
Similarly, we can define fff if f is defined on [a,b).
(iii) As f is defined on R, if [;° f and ffoo f both exist, then we put [*_f = ff)oo f+ 17
In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Example 2.32. Define (formally) an improper integral T'(s) ( called the T'-function) as follows:

oo
I'(s) ::/ 25 te % dx
0

for s € R. Then I'(s) is convergent if and only if s > 0.
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Proof. Put I(s) := fol 2 le *dx and I1(s) := [[°a* te “dz. We first claim that the integral I1(s)
is convergent for all s € R.

In fact, if we fix s € R, then we have
xs—l

e =0

-1

So there is M > 1 such that zZT < 1 for all z > M. Thus we have

[o¢] o0
0< / e dx < / e 2 dr < 0.
M M

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

! ! 11— if s —1# —1;
OS/ ajs_le_md:zzg/ Lfs_ldl': {5( 77) I s 7é )
n n

—lInn otherwise .

n—0+

1
Thus the integral I(s) = lim / 25 Ye™*dx is convergent if s > 0.
n

Conversely, we also have

1 .
/1 2 le %dy > et /1 ¥ Vdr = {es(l —n°) if s =1# -1
n n

—ellnn otherwise .

So if s <0, then fnl " te~*dx is divergent as n — 04. The result follows. O

3. APPENDIX: LEBESGUE INTEGRABILITY THEOREM

Throughout this section, let f be a R-valued function defined on [a, b] and let M := sup |f(x)|.

Definition 3.1. A subset A of R is said to have measure zero (or null set) if for every e > 0, there
is a sequence of open intervals, (an,by) such that A C J(an,byn) and (b, — ap) < €.

Clearly we have the following assertion.

Lemma 3.2. If (A,) is a sequence of null sets, then so is |J A,. Consequently, all countable sets are
null sets.

From now on, we use the following notation in the rest of this section.

(1) For each subset A of [a,b], put w(f, A) :=sup{|f(x) — f(a')| : z,2" € A}.
(2) For ¢ € [a,b], put w(f,c) :=inf{w(f, B(c,7)):r > 0}, where B(c,r) := (¢ —r,c+71).

The following is easy shown directly from the definition.
Lemma 3.3. The function f is continuous at ¢ € [a,b] if and only if w(f,c) = 0.

Theorem 3.4. Lebesgue integrability theorem: Retains the notation as above. Let D := {c €
[a,b] : f is discontinuous at c}. Then f € Rla,b] if and only if D has measure zero.
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o
Proof. For each positive integer n, let D, := {z € [a,b] : w(f,2) > 1}. Then we have D = U D,,.
For (=), assume that f € R[a,b]. Then by Lemma 3.2, it suffices to show that each D, is Z Iiull set.
Fix a positive integer m such that D,, # (. Now Let ¢ > 0. Since f € R[a,b|, there is a partition
P:a=uwmz9 < - <z = bsuch that Y wi(f, P)Azr < 5. Notice that ¢ € Dy, if and only if
w(f, B(c,8)) > L for all § > 0, where B(c,8) := (¢ — §,¢+6). Thus, if [z4_1,24] N Dy, # 0, then
wk(f, P) > L. This implies that

€ n
> > wr(f, P)Amy,
k=1

Y

> wi(f, P)Azy

E:lxk—1,26]NDm #0

> % Z Axy.

ki@p—1,2k]|NDm#0

Therefore, we have D,,, C U [xg_1, zx] and

ki —1,2k]|NDpm #£0
Z Az < €.
ki[xg—1,2k]|NDm#0
Thus, D,, is a null set for each positive integer m as desired.
Now for showing (<), assume that the set D of all discontinuous points of f is a null set.
We first claim that each D,, is a closed set. To see this, note that a point ¢ € D,, if and only
if w(f,B(e,r)) > % for all » > 0 if and only if for all n > 0 and for all » > 0, there are points
z',2" € B(ec,r) such that |f(z) — f(z”)] > L —n. Now let (c,) be a sequence in D, converging to
a point c¢. Let » > 0 and 1 > 0. Then there is cy such that |cy —¢| < §. Since cy € Dy, there are
2',2" € B(en, 5) such that |f(2) — f(z”)] > L —n. Since 2/,2” € B(en, 5), 2/,2” € B(e,r). Thus,
¢ € Dy, is as desired. This shows that D,, is a closed subset of [a, b], and hence it is compact.
Let ¢ > 0 and let m be a positive integer such that 1/m < e. By the assumption D = (J;2, D,
is a null set and so is the set D,,. Then there is a sequence of open intervals, say {(a;,b;)}, such
that Dy, C (J(a;,b5) and > (b; — a;) < €. Since Dy, is compact, there are finitely many (a;,b;)’s for
j=1,..., K such that D,, C Uj(zl(aj, b;). Note that we may assume that the sequence a1 < by < as <
by < -+ < ag < bg. Choose a partition Q := {a;,b;: j =1,..., K} U{a,b} on [a,b] and rewrite Q as
a=x9<--<xp=>b. Let J=(a,b1)U---U(ak,bxg)-
Put I :={j: [xjfl,:vj] NnJ = @} and IT :={j: [acjfl,xj] NnJ # (b} .
Note that if j € I, then w(f,z) < L for all z € [z;_1,z;]. Hence, for each x € [z;_1,z;], there
is 6, > 0 such that w(f, B(z,0;)) < =. Then by the compactness of [z;_1,;], there is a partition
Plixj=x5 <. < =uzjon [vj_1,;] such that wy (f, P}) < % for all 7/ = 1,...,1. Thus, we
have . wj(f, P;)ij/ < L(xj —xj_1) <e(xj_1 — ;) whenever j € I.
On the other hand, if j € II, then [z;_q,z;] N J # 0. Since Z]K:l(bj — aj) < €, we see that
> jenwilf, @)Az; < 2Me.

Now put P := QU U Pj’ ta=1yy < --- <yny =b. From the above argument, we have shown that
Jel
Zfil wi(f, P)Ay; < e(b—a) 4+ 2Me. Thus f € R[a,b]. The proof is complete. O



